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Abstract

Motivated by the pricing of first touch digital options in exponential Lévy models and
corresponding credit risk applications, we study numerical methods for solving related
partial integro-differential equations. The goal of the paper is to consider advantages of
the Laplace transform-based approach in this context. In particular, we show that the
computational efficiency of the numerical methods which start with the time discretization
can be significantly enhanced (often, in several dozen of times) by means of the Laplace
transform technique. As an additional result we provide a new Wiener-Hopf factorization
formula which admits an efficient numerical realization by means of the Fast Fourier
Transform. We propose two new efficient methods for pricing first touch digital options
in wide classes of Lévy processes. Both methods are based on the numerical Laplace
transform inversion formulae and a numerical Wiener-Hopf factorization. The first method
uses the Gaver-Stehfest algorithm, the second one deals with the Post-Widder formula.
We prove the advantages of the new methods in terms of accuracy and convergence by
using numerical experiments.

Keywords: Jump processes, Factorization theory, Laplace transform, Computational meth-
ods, Mathematical finance

1 Introduction

In recent years more and more attention has been given to stochastic models of financial markets
which depart from the traditional Black-Scholes model. At this moment a wide range of models

∗This research was supported by Russian Foundation for Humanities grant 15-32-01390.
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is available. One of the tractable empirical models are jump diffusions or, more generally, Lévy
processes. For an introduction on these models applied to finance, we refer to [12].

In the paper, we study the problem of pricing of first touch digital options in exponential
Lévy models. We concentrate on the one-dimensional case and consider the model case of a
continuously monitored option with a barrier from below. The problem is also important for
credit risk applications, where the default events are often modeled as barrier crossing events
and intra-horizon risk applications (see e.g. [17], [3]).

Let T,H be the maturity, barrier, and St = HeXt be the stock price under a chosen risk-
neutral measure. The riskless rate r is assumed to be constant. We consider a first touch digital
with a barrier from below H and and an expiration date T . The contract pays $1, as a stock
price St for first time the crosses the barrier H. If up to the date T the price does not cross
the barrier H, the option becomes worthless.

Then the no-arbitrage price of the first touch digital option at time t < T and Xt = x > 0
is given by

F (t, x) = E
[
e−r(T

′−t)1T ′≤T | Xt = x
]
, (1)

where T ′ is the first entrance time into (0, H].
The problem (1) is closely related to calculating first-passage probabilities. If the riskless

rate r = 0, then
P [T ′ ≤ T | Xt = x] = F (t, x). (2)

In the latter case, the expectations F (t, x) are taken under the physical probability measure.
Option valuation under Lévy processes has been dealt with by a host of researchers, there-

fore, an exhaustive list is virtually impossible. One can find up-to-date surveys of the state of
the art in computational finance and detailed bibliographies for further reading in [11]. The
large group of numerical methods for pricing path-dependent options starts with the reduction
to a boundary problem for the generalization of the Black-Scholes equation (backward Kol-
mogorov equation, [7, 12]). Then the methods typically use either a time discretization (the
method of horizontal lines), see e.g. [13, 19, 28, 31], or Laplace transform with respect to the
time variable, e.g. [34, 32, 29, 26, 40].

In the former case, one obtains a sequence of the certain stationary boundary problems
for integro-differential equations on the line. Problems of the sequence can be solved by using
either a finite difference scheme (e.g. [13, 33, 30]), or using the Fast Wiener-Hopf factorization
method (FWHF-method), [28]. Usually one needs at least several hundred steps in time to
achieve good accuracy (within 0.5%–1%). The FWHF-method is based on an efficient approx-
imation of the Wiener-Hopf factors in the exact formula for the solution and the Fast Fourier
Transform algorithm. In contrast to finite difference methods where the application entails a
detailed analysis of the underlying Lévy model, the FWHF-method deals with the character-
istic exponent of the process. Numerical examples with the comparison of the FWHF-method
and finite difference schemes are reported in [28]. The paper [18] provides a formal solution to
the continuously monitored double-barrier option using Toeplitz operator theory.

The Laplace transform-based approach is applicable if the characteristic exponent of the
underlying Lévy process is rational. The basic examples are the Brownian motion, Kou’s
model and its generalization, the Hyper-Exponential Jump-Diffusion model (HEJD). In this
case, the Laplace transform is derived explicitly from the distribution of the first passage time
by applying the Wiener-Hopf factorization method. Once the Laplace transform is calculated,
one uses a suitable numerical Laplace inversion algorithm to recover the option price. If the set
of the option prices is needed one should repeat the procedure separately for each initial spot
price of the underlying.
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The general formulae for the prices of the barrier options in the Laplace domain involve
the double Fourier inversion (and one more integration needed to calculate the factors in the
Wiener-Hopf factorization formula), and hence it is difficult to implement them in practice In
the general case, one can also approximate the initial process by Kou’s model or by an HEJD,
and then use the Laplace transform method (see e.g. [14, 22]). However, the additional source
of the errors appears.

The goal of the paper is to show the advantage of the Laplace transform-based approach in
the context of the option pricing under general Lévy processes. The idea behind our approach
is to transform the problem to the Laplace domain where the solution is relatively easy to
obtain by using the Fast Wiener-Hopf factorization method (or a finite difference scheme). The
methods developed in the paper, in contrast to the other Laplace transform methods described
above, can be applicable for the characteristic exponent of the general form. We will show that
the Laplace transformation technique significantly reduces the computational complexity of the
FWHF-method as well as finite difference schemes. We provide the order of the convergence
of the horizontal lines method for the generalized Black-Scholes equation in the case of first
touch digital options, and give the acceleration of the convergence formula. As an additional
result we provide a new Wiener-Hopf factorization formula which admits an efficient numerical
realization by means of the Fast Fourier Transform.

The Laplace transform maps the generalized Black- Scholes equation with the appropriate
boundary conditions into the one-dimensional problem on the half-line parametrically depen-
dent on the transform parameter. In our first approach, we solve the problems obtained by using
the FWHF-method at real positive values of the transform parameter specified by the Gaver-
Stehfest algorithm. Then option prices are computed via the numerical inversion formula. The
second new approach is based on the Post-Widder formula.

We prove the advantages of the new methods in terms of accuracy and convergence by
using numerical experiments. The methods achieve good accuracy (within 0.5%–1%) in few
milliseconds, even near the barrier. Hence, these methods can be effectively used for calibration
of Lévy models to barrier options.

The rest of the paper is organized as follows: in Section 2 we list the necessary facts of
the theory of Lévy processes. Section 3 reviews the Fast Wiener-Hopf factorization method
developed in [28], suggests a new Wiener-Hopf factorization formula which admits an efficient
numerical realization by means of the Fast Fourier Transform, and introduces two enhanced
FWHF-methods based on the numerical Laplace transform inversion. In Section 4, we pro-
duce numerical examples, and compare the results obtained by different methods; Section 5
concludes.

2 Lévy models

2.1 Lévy processes: general definitions

A Lévy process is a stochastically continuous process with stationary independent increments
(for general definitions, see e.g. [39]). A Lévy process may have a Gaussian component and/or
pure jump component. The latter is characterized by the density of jumps, which is called the
Lévy density. A Lévy process Xt can be completely specified by its characteristic exponent,
ψ, definable from the equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional
case).
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The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1− eiξy + iξy1|y|≤1)F (dy), (3)

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure F (dy) satisfies∫
R\{0}

min{1, y2}F (dy) < +∞. (4)

Assume that under a risk-neutral measure chosen by the market, the stock has the dynamics
St = eXt , where Xt is a certain Lévy process. Then we must have E[eXt ] < +∞, and, therefore,
ψ must admit the analytic continuation into a strip =ξ ∈ (−1, 0) and continuous continuation
into the closed strip =ξ ∈ [−1, 0]. Further, if the riskless rate, r ≥ 0, is constant, then the
following condition (the EMM-requirement) must hold (see e.g. [7]): E[eXt ] = ert. Equivalently,
we have the relation

r + ψ(−i) = 0, (5)

which can be used to express the drift µ via the other parameters of the Lévy process:

µ = r − σ2

2
+

∫ +∞

−∞
(1− ey + y1|y|≤1)F (dy). (6)

The infinitesimal generator of X, denote it L, is an integro-differential operator which acts
as follows:

Lu(x) =
σ2

2
u′′(x) + µu′(x) +

∫ +∞

−∞
(u(x+ y)− u(x)− y1|y|≤1u

′(x))F (dy). (7)

The infinitesimal generator L also can be represented as a pseudo-differential operator (PDO)
with the symbol −ψ(ξ), i.e. L = −ψ(D). Recall that a PDO A = a(D) acts as follows:

Au(x) = (2π)−1

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ, (8)

where û is the Fourier transform of a function u:

û(ξ) =

∫ +∞

−∞
e−ixξu(x)dx. (9)

Note that the inverse Fourier transform in (8) is defined in the classical sense only if the
symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the (inverse) Fourier
transform by duality.

2.2 Regular Lévy processes of exponential type

Loosely speaking, a Lévy process X is called a Regular Lévy Process of Exponential type (RLPE)
if its Lévy density has a polynomial singularity at the origin and decays exponentially at the
infinity (see [7]). An almost equivalent definition is: the characteristic exponent is analytic in
a strip =ξ ∈ (λ−, λ+), λ− < −1 < 0 < λ+, continuous up to the boundary of the strip, and
admits the representation

ψ(ξ) = −iµξ + φ(ξ), (10)
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where φ(ξ) stabilizes to a positively homogeneous function at the infinity:

φ(ξ) ∼ c±|ξ|ν , as <ξ → ±∞, in the strip =ξ ∈ (λ−, λ+), (11)

where c± > 0. “Almost” means that the majority of classes of Lévy processes used in empirical
studies of financial markets satisfy conditions of both definitions. These classes are: Brownian
motion, Kou’s model [24], Hyperbolic processes [15, 16], Normal Inverse Gaussian processes
and their generalization [4, 5], and extended Koponen’s family. In [23] a symmetric version was
introduced; [6] gave a non-symmetric generalization; later a subclass of this model appeared
under the name CGMY–model in [10], and [7] used the name KoBoL family. The important
exception is Variance Gamma Processes (VGP) [35]. VGP satisfy the conditions of the first
definition but not the second one, since the characteristic exponent behaves like const · ln |ξ|,
as ξ →∞.

Example 1. The characteristic exponent of a pure jump KoBoL process [7] (a.k.a. CGMY
model [10]) of order ν ∈ (0, 2), ν 6= 1 is given by

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ], (12)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.
Example 2. If Lévy density is given by exponential functions on negative and positive

axis:
F (dy) = 1(−∞;0)(y)c+λ+e

λ+ydy + 1(0;+∞)(y)c−(−λ−)eλ−y,

where c± ≥ 0 and λ− < −1 < 0 < λ+, then we obtain Kou model [24]. The characteristic
exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
. (13)

It is easy to show that Kou model is a compound Poisson process with double exponentially
distributed jumps. Denote p ∈ [0; 1] the probability of the upward jumps, λ the arrival rate of
jump sizes. Then we have c+ = λ(1 − p), c− = λp, and positive and negative jump sizes have
exponential distribution with intensity −λ− and λ+, respectively.

2.3 The Wiener-Hopf factorization

There are several forms of the Wiener-Hopf factorization. The Wiener-Hopf factorization for-
mula used in probability reads:

E[eiξXT ] = E[eiξX̄T ]E[eiξXT ], ∀ ξ ∈ R, (14)

where T ∼ Exp q, and X̄t = sup0≤s≤tXs and X t = inf0≤s≤tXs are the supremum and infimum
processes. Introducing the notation

φ+
q (ξ) = qE

[∫ ∞
0

e−qteiξX̄tdt

]
= E

[
eiξX̄T

]
, (15)

φ−q (ξ) = qE

[∫ ∞
0

e−qteiξXtdt

]
= E

[
eiξXT

]
(16)

we can write (14) as
q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ). (17)
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The equation (17) is a special case of the Wiener-Hopf factorization of the symbol of a PDO. In
applications to Lévy processes, the symbol is q/(q + ψ(ξ)), and the PDO is Eq := q/(q − L) =
q(q + ψ(D))−1: the normalized resolvent of the process Xt or, using the terminology of [8], the
expected present value operator (EPV–operator) of the process Xt. The name is due to the
observation that, for a stream g(Xt),

Eqg(x) = E

[∫ +∞

0

qe−qtg(Xt)dt | X0 = x

]
.

Introduce the following operators:
E±q := φ±q (D), (18)

which also admit interpretation as the EPV–operators under supremum and infimum processes.
One of the basic observations in the theory of PDO is that the product of symbols corre-

sponds to the product of operators. In our case, it follows from (17) that

Eq = E+
q E−q = E−q E+

q (19)

as operators in appropriate function spaces.
For a wide class of Lévy models E and E± admit interpretation as expectation operators:

Eqg(x) =

∫ +∞

−∞
g(x+ y)Pq(y)dy, E±q g(x) =

∫ +∞

−∞
g(x+ y)P±q (y)dy,

where Pq(y), P±q (y) are certain probability densities with

P±q (y) = 0, ∀ ± y < 0.

Moreover, characteristic functions of the distributions Pq(y) and P±q (y) are
q(q + ψ(ξ))−1 and φ±q (ξ), respectively.

2.4 The generalized Black-Scholes equation

The price of any derivative contract, F (t,Xt), will satisfy the Feynman-Kac formula, that is to
say

(∂t + L− r)F (t, x) = 0, (20)

where x denotes the (normalized) log-price, t denotes the time, and L is the infinitesimal
generator (under risk-neutral measure).

For the sake of brevity, consider the first touch digital option with the barrier from below
H, maturity T , on a non-dividend paying stock St. Therefore, for the one-state Lévy process
Xt = ln(St/H) with the generator (7), the derivative price, F (t,Xt), will satisfy the following
partial integro-differential equation (or more general pseudo-differential equation) with the
appropriate initial and boundary conditions. See details in [7, 12].

(∂t + L− r)F (t, x) = 0, t < T, x > 0, (21)

F (T, x) = 0, x > 0 (22)

F (t, x) = 1, t ≤ T, x ≤ 0, (23)

where a+ = max{a, 0}. In addition, F must be bounded.
If the characteristic exponent ψ is sufficiently regular (e.g. Xt belongs to the class of RLPE),

then the general technique of the theory of PDO can be applied to show that a bounded solution,
which is continuous on suppV ⊂ (−∞, T )× (0,+∞), is unique – see, e.g., [27].
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3 Laplace transform in the context of the FWHF-method

3.1 Numerical Laplace transform inversion: an overview

The Laplace transform is one of the classical methods for solving partial (integro)-differential
equations which maps the problem to a space where the solution is relatively easy to obtain.
The corresponding solution is referred to as the solution in the Laplace domain. In our case,
the original function can not be retrieved analytically via computing the Bromwich’s integral.
Hence, the numerical inversion is needed.

We refer the reader to [2] for a description of a general framework for numerical Laplace
transform inversion that contains the optimized version of the one-dimensional Gaver-Stehfest
method.

Recall that popular in computational finance the Gaver-Stehfest algorithm for inverting
Laplace transforms is related to the Post-Widder inversion formula. If f(τ) is a function of a
nonnegative real variable τ and the Laplace transform f̃(λ) =

∫∞
0
e−λτf(τ) dτ is known, the

approximate Post-Widder formula for f(τ) can be written as

f(τ) = lim
N→∞

fN(τ); (24)

fN(τ) :=
(−1)N−1

(N − 1)!

(
N

τ

)N
f̃ (N−1)

(
N

τ

)
, (25)

where f̃ (N)(λ) – Nth derivative of the Laplace transform f̃ at λ. It is well known that the
convergence fN(τ) to f(τ) as N → ∞ is slow (of order N−1), so acceleration is needed. In
order to enhance the accuracy, [1] suggests a linear combination of the terms, i.e.,

fN,m(τ) =
m∑
k=1

w(k,m)fNk(τ), (26)

w(k,m) = (−1)m−k
km

k!(m− k)!
. (27)

In this case, convergence fN,m(τ) to f(τ) is of order N−m.
The methods of numerical Laplace inversion that fit the framework of [2] have the following

general feature: the approximate formula for f(τ) can be written as

f(τ) ≈ 1

τ

N∑
k=1

ωk · f̃
(αk
τ

)
, 0 < τ <∞, (28)

where N is a positive integer and αk, ωk are certain constants that are called the nodes and
the weights, respectively. They depend on N , but not on f or on τ . In particular, the inversion
formula of the Gaver-Stehfest method can written in the form (28) with

N = 2n; (29)

αk = k ln(2) (30)

ωk :=
(−1)n+k ln(2)

n!

min{k,n}∑
j=[(k+1)/2)]

jn+1Cj
nC

j
2jC

k−j
j , (31)

where [x] is the greatest integer less than or equal to x and CK
L = L!

(L−K)!K!
are the binomial

coefficients. Because of the binomial coefficients in the weights, the Gaver-Stehfest algorithm
tends to require high system precision in order to yield good accuracy in the calculations.
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From [41], we conclude that the required system precision is about 1.1N , when the parameter
is N . In particular, for N = 14 standard double precision gives reasonable results. Since
constants ωk do not depend on τ they can be tabulated for the values of n that are commonly
used in computational finance (e.g., 12 or 14).

The precision requirement is driven by the coefficients ωk in (31). Such a high level of
precision is not required for the computation of the transform f̃ .

3.2 The Fast Wiener-Hopf factorization method

We briefly review the framework proposed by [28]. The main contribution of the FWHF–method
is an efficient numerical realization of EPV-operators E , E+ and E−.

Recall that we consider the procedure for approximations of the Wiener-Hopf factors for
the symbol q/(q + ψ(ξ)) with ψ being characteristic exponent of RLPE of order ν ∈ (0; 2] and
exponential type [λ−;λ+]. The first ingredient is the reduction of the factorization problems to
symbols of order 0, which stabilize at infinity to some constant.

Introduce functions

Λ−(ξ) = λ
ν+
+ (λ+ + iξ)−ν+ ; (32)

Λ+(ξ) = (−λ−)ν−(−λ− − iξ)−ν− ; (33)

Φ(ξ) = q
(

(q + ψ(ξ))Λ+(ξ)Λ−(ξ)
)−1

. (34)

Choices of ν+ and ν− depend on properties of ψ, hence on order ν (see (10)–(11)) and drift µ.
See details in [28]. First, approximate Φ by a periodic function with a large period 2π/h, which
is the length of the truncated region in the frequency domain, then approximate the latter by
a partial sum of the Fourier series, and, finally, use the factorization of the latter instead of the
exact one.

Explicit formulae for approximations of φ± have the following form. For small positive h
and large even M , set

bhk =
h

2π

∫ π/h

−π/h
ln Φ(ξ)e−iξkhdξ, k 6= 0, (35)

b+
h,M(ξ) =

M/2∑
k=1

bhk(exp(iξkh)− 1), b−h,M(ξ) =
−1∑

k=−M/2+1

bhk(exp(iξkh)− 1); (36)

Φ±(ξ) ≈ exp(b±h,M(ξ)), φ±q (ξ) = Λ±(ξ)Φ±(ξ). (37)

The computational complexity of the Fast Fourier Transform based realization of (35)-(37) is
O(M lnM), where M is a number of points.

We can apply this realization both after the reduction to symbols of order 0 has been
made, and without this reduction. In the latter case, Λ± = 1, and we obtain a Poisson type
approximation.

It is well-known that the limit of a sequence of the Poisson type characteristic functions is
infinitely divisible characteristic function. The converse is also true. Every infinitely divisible
characteristic function can be written as the limit of a sequence of finite products of Poisson
type characteristic functions. Since ψ(ξ) is the characteristic exponent of Lévy process, then
the function q/(q + ψ(ξ)) is infinitely divisible characteristic function.
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3.3 Alternative approximate factorization formulae

If a Lévy process Xt belongs to the class RLPE, then the following integral representations for
φ+
q (ξ), φ−q (ξ) are valid (see details in [7]):

φ+
q (ξ) = exp

[
(2πi)−1

∫ +∞+iω−

−∞+iω−

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
; (38)

φ−q (ξ) = exp

[
−(2πi)−1

∫ +∞+iω+

−∞+iω+

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
, (39)

where ω− < 0 < ω+ with ω−, ω+ depending on the Lévy process Xt parameters. Notice that
the direct computation of φ+

q (ξ) and φ−q (ξ) require O(NM) operations, where N is a number
of ξ-points and M is a number of points for numerical integration in (38)-(39). It makes these
formulae very expensive from computational point of view (compare with (35)-(37)).

Below we suggest new formulae for φ+
q (ξ), φ−q (ξ) which will improve the computational

complexity.

Theorem 3.1 Let a Lévy process Xt belongs to the class RLPE. Then there exist constants
ω−, ω+, ω− < 0 < ω+ such that

a) φ+
q (ξ) admits analytical continuation into half-plane =ξ > ω− and can be represented as

follows:

φ+
q (ξ) = exp

[
iξF+(0)− ξ2F̂+(ξ)

]
, (40)

F+(x) = 1(−∞,0](x)(2π)−1

∫ +∞+iω−

−∞+iω−

eixη
ln(q + ψ(η))

η2
dη; (41)

F̂+(ξ) =

∫ +∞

−∞
e−ixξF+(x)dx. (42)

b) φ−q (ξ) admits analytical continuation into half-plane =ξ < ω+ and can be represented as
follows:

φ−q (ξ) = exp
[
−iξF−(0)− ξ2F̂−(ξ)

]
, (43)

F−(x) = 1[0,+∞)(x)(2π)−1

∫ +∞+iω+

−∞+iω+

eixη
ln(q + ψ(η))

η2
dη; (44)

F̂−(ξ) =

∫ +∞

−∞
e−ixξF−(x)dx. (45)

The proof of Theorem 3.1 follows from a simple idea to represent the integrand in (38)-(39) as
follows:

ξ ln(q + ψ(η))

η(ξ − η)
=

ln(q + ψ(η))

η2

(
−ξ +

ξ2

ξ − η

)
.

It is easy to see that the formulae in Theorem 3.1 can be efficiently realized by means of the
Fast Fourier Transform with the computational complexity O(M lnM), where M is a number
of points.
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3.4 A FFT-based realization of Wiener-Hopf operators as PDOs

Approximants for EPV-operators can be efficiently computed by using the Fast Fourier Trans-
form (FFT) for real-valued functions. Consider the algorithm of the discrete Fourier transform
(DFT) defined by

Gl = DFT [g](l) =
M−1∑
k=0

gke
2πikl/M , l = 0, ...,M − 1. (46)

The formula for the inverse DFT which recovers the set of gk’s exactly from Gl’s is:

gk = iDFT [G](k) =
1

M

M−1∑
l=0

Gle
−2πikl/M , k = 0, ...,M − 1. (47)

In our case, the data consist of a real-valued array {gk}Mk=0. The resulting transform satisfies
GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2, and M/2− 1 other
independent complex values G1, ..., GM/2−1, then it has the same “degrees of freedom” as the
original real data set. In this case, it is efficient to use FFT algorithm for real-valued functions
(see [36] for technical details). To distinguish DFT of real functions we will use notation RDFT.

Fix the space step h > 0 and number of the space points M = 2m. Define the partitions
of the normalized log-price domain [−Mh

2
; Mh

2
) by points xk = −Mh

2
+ kh, k = 0, ...,M − 1,

and the frequency domain [−π
h
; π
h
] by points ξl = 2πl

hM
, l = −M/2, ...,M/2. Then the Fourier

transform of a function g on the real line can be approximated as follows:

ĝ(ξl) ≈ heiπlRDFT [g](l), l = 0, ...,M/2.

Here and below, z denotes the complex conjugate of z. Using the notation p(ξ) = q(q+ψ(ξ))−1,
we can approximate Eq:

(Eqg)(xk) ≈ iRDFT [p. ∗RDFT [g]](k), k = 0, ...,M − 1. (48)

Here and below, .∗ is the element-wise multiplication of arrays that represent the functions.
Further, using (35)-(37) or Theorem 3.1 we define p±(ξl) as approximate values of phi±q (ξl),
l = −M/2, ..., 0. The action of the EPV-operator E±q is approximated as follows:

(E±q g)(xk) = iRDFT [ p±. ∗RDFT [g]](k), k = 0, ...,M − 1. (49)

3.5 The Gaver-Stehfest algorithm and the FWHF-method

In our study we apply the Laplace transform to the problem (21) for pricing barrier options
under Lévy models. Then we solve the corresponding problem in the Laplace domain at real
positive values of the transform parameter specified by the Gaver-Stehfest algorithm.

We introduce a new variable τ = T − t. With a new function f(τ, x) = F (T − τ, x) the
problem (21)-(23) turns into

(∂τ + r − L)f(τ, x) = 0, x > 0, τ > 0, (50)

f(τ, x) = 1, x ≤ 0, τ ≥ 0, (51)

f(0, x) = 0, x > 0, (52)

10



Then we introduce a new function v(τ, x) = f(τ, x)− 1, and we obtain

(∂τ + r − L)v(τ, x) = −r, x > 0, τ > 0, (53)

v(τ, x) = 0, x ≤ 0, τ ≥ 0, (54)

v(0, x) = −1, x > 0. (55)

The Laplace transform of v(τ, x) with respect to the time variable is defined by

ṽ(λ, x) :=

∫ ∞
0

e−λτv(τ, x) dτ,

where λ is a transform variable with positive real part, <λ > 0. To be specific, in subsequent
study we assume that λ ∈ R+. The standard rules yield

∂τv(τ, x) 7→ λṽ(λ, x)− v(0, x), Lv(τ, x) 7→ Lṽ(λ, x).

Applying Laplace transform to (53), we obtain that ṽ(λ, x) satisfies the following equation:

(λ+ r − L)ṽ(λ, x) = −(λ+ r)λ−1, x > 0, (56)

subject to the corresponding transformed boundary condition

ṽ(λ, x) = 0, x ≤ 0. (57)

Given n, we can use the Gaver-Stehfest inversion formula for ṽ(λ, x) provided that the solutions
to the problem (56),(57) are found at λ = k ln 2/T , k = 1, . . . , N (see (28)–(31)).

Set q = λ + r and denote by 1(0,+∞)(x) the indicator function of (0,+∞). A general class
of boundary problems

(q − L)u(x) = g(x), x > 0, (58)

u(x) = 0, x ≤ 0; (59)

that contains the problem (56)-(57) was studied in [7]. It was shown that the unique bounded
solution to (58)-(59) is given by

u(x) =
1

q

(
E−q 1(0,+∞)E+

q g
)

(x). (60)

Taking into account that g(x) = (λ+ r)λ−1 and simplifying (60), we obtain

ṽ(λ, x) = −λ−1E−q 1(0;+∞)(x). (61)

Now, the Fast Wiener-Hopf factorization method [28] can be applied. Since the approximate
expressions for the Wiener-Hopf factors φ±q (ξ) are available (see 35), one can calculate ṽ(λ, x)
quite easily using formulae (49).

It follows, that the computational complexity of the developed algorithm (as well as the
FWHF-method) is O(NM lnM), where M is a number of points in the log-price space; in the
case of the FWHF-method, N denotes the number of time steps. The Gaver-Stehfest algorithm
produces rapid convergence results already using N = 10− 14 apart from the FWHF-method
with N being of order 400−800. Hence, the new method is computationally much faster (often,
dozens of times faster) than the original FWHF-method constructed in [28].
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Our new method enjoys an additional appealing feature: it produces a set of option prices at
different spot levels. Notice that in the case of the known Laplace transform methods, one must
perform numerical Laplace inversion separately for each initial spot price of the underlying.

Our new algorithm provides increasing accuracy as N in the Gaver-Stehfest inversion for-
mula increases. However, if N > 14 good accuracy results can be achieved only using a
multi-precision computational environment.

The method based on the Post-Widder formula (see the next subsection) achieves similar
performance to the method proposed here; however, the former method does not require high
precision.

Remark 3.2 The problem (56),(57) can be also solved by a finite difference method (e.g. [13,
33, 30]). Since the number of time steps in finite difference schemes is sufficiently large (several
hundreds, or thousands), we can significantly improve the speed of such methods.

3.6 The Post-Widder formula or Carr’s randomization

In this subsection, we propose the second new approach to pricing barrier options which involves
the numerical Laplace transform inversion formulae (26), (27). Recall that we are looking for
the solution v(τ, x) to the problem (53)-(54) at τ = T .

Applying the Laplace transform to the corresponding PIDE, we consider the problem (56),
(57) in the Laplace domain, once again. As a basis for the Gaver-Stehfest algorithm, it was
established a discrete analog of the Post-Widder formula (24) involving finite differences to
approximate Nth derivative of the transformed function. In fact, for performing numerical
inversion we need to find ∂Nλ ṽ(λ, x).

We have, on differentiating both sides of the equations (56),(57) with respect to λ:

(λ+ r − L)∂λṽ(λ, x) = −ṽ(λ, x) +
r

λ2
, x > 0, (62)

∂λṽ(λ, x) = 0, x ≤ 0. (63)

Repeating this procedure, for all k = 1, 2, ..., N − 1, we obtain a sequence of the following
problems

(λ+ r − L)∂kλṽ(λ, x) = −k∂k−1
λ ṽ(λ, x) +

(−1)k+1r

k!λk+1
, x > 0, (64)

∂λṽ(λ, x) = 0, x ≤ 0. (65)

Fix an integer N > 1, and set ∆τ = T/N , λ = 1/∆τ . Then we introduce the following
functions:

v0(x) = −1(0,+∞)(x); (66)

vk+1(x) =
(−1)k

k!

(
1

∆τ

)k+1

∂kλṽ

(
1

∆τ
, x

)
, k = 0, ..., N − 1. (67)

It follows that

∂kλṽ

(
1

∆τ
, x

)
= (−1)kk!(∆τ)k+1vk+1(x), k = 0, ..., N − 1. (68)

Substituting expressions 1/∆τ for λ and (68) for ∂kλṽ
(

1
∆τ
, x
)

into (64)-(65), simplifying and
eliminating the multipliers from the final set of equations, one finds for k = 1, ..., N :

(q − L)vk(x) =
1

∆τ
vk−1(x)− r, x > 0, (69)

vk(x) = 0, x ≤ 0, (70)
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where q = r + 1/∆τ .
The sequence vk(x), k = 1, 2, ..., N + 1, is determined recurrently by means of the problem

(69), (70) at each step k. It follows from [7] that the unique bounded solution to the problem
(69), (70) is given by

vk =
1

q∆τ
E−q 1(0,+∞)E+

q (vk−1 − r∆τ). (71)

Once again, the Fast Wiener-Hopf factorization method [28] can be applied. Moreover, the
only one approximate formula for Wiener-Hopf operator E−q (49) is needed at the last step. At
all intermediate steps, the exact analytic expression q/(q + ψ(ξ) is used (see (48)). Indeed, set

w1 = 1(0;+∞)E+
q (v0 − r∆τ) = 1(0;+∞)(−1− r∆τ). (72)

For k = 2, . . . , N , define
wk = 1(0;+∞)E+

q (vk−1 − r∆τ). (73)

Then
vk = (q∆τ)−1E−q wk. (74)

Using the Wiener-Hopf factorization formula (19), we obtain that for k = 2, . . . , N

wk = 1(0;+∞)(x)((q∆τ)−1Eqwk−1(x)− r∆τ). (75)

Since we are looking for vN(x), we need to apply the formula (74) at the step k = N only.
Finally, we take into account the Post-Widder formula (24)-(25). As a result, we conjecture

that the solution vN(x) to our problem converges to the unknown solution v(T, x) of the problem
(53)-(54), as N gets arbitrarily large with T held fixed.

Unfortunately, the Post-Widder formula provide a very poor approximation (of order N−1).
See details in Subsection 3.1. For example, v1000(x) may yield an estimate to v(T, x) with only
two or three digits of accuracy. To achieve a good approximation, a convergence acceleration
algorithm is required for the sequence vN(x). A good candidate is the summation formula
(26)-(27) (see [1]). We start with the choice N = 5 and m = 3, and increase them if necessary.

Given parameters N and m in (26)-(27), the computational complexity of the developed
algorithm is O(N0M lnM), where M is a number of points in the log-price space, and N0 =
N(m+1)m

2
.

The new enhanced FWHF-method based on the Post-Widder formula produces rapid con-
vergence results already using N = 10 and m = 3. Hence, the new method is computationally
much faster than the original FWHF-method developed in [28].

The second new method achieves similar performance to the first one constructed in the
previous Subsection. Our new algorithm provides increasing accuracy asN andm in the formula
(26) increase. At the same time, the method does not require a multi-precision arithmetic.

Remark 3.3 Notice that our value vk(x) is also the approximation for the solution v(k∆τ, x)
to the problem (53)-(54) which arises when time is discretized and the derivative ∂τv(k∆τ, x)
in (53) is replaced with the finite difference:

(1/∆τ)(v(k∆τ, x)− v((k − 1)∆τ, x)).

The notion of discretizing time while leaving space continuous is known in the numerical
methods literature as the method of horizontal lines or Rothe’s method [38]. Carr’s random-
ization procedure [9] indicates an alternative probabilistic interpretation of the approximation
induced by our procedure. Notice that Carr’s randomization was successfully applied to the
valuation of (single and double) barrier options in a number of works.
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Taking into account properties of the Post-Widder functionals (25) (see the corresponding
results in [20, 21]) and the method of lines interpretation obtained we conclude that the following
proposition holds.

Proposition 3.4 Let Xt be a RLPE with an infinitesimal generator (7), v(τ, x) – solution to

the problem (53)-(55); v
(N)
j (T, x), j = N − 1, N − 2, ..., 0 – consequence of the solutions to the

problems (64)–(65) with v
(N)
0 (T, x) = −1(0;+∞)(x), q = ∆τ−1 + r and ∆τ = T/N . Then for

each fixed x the following properties hold:

• the upper and lower bounds are −1 ≤ v
(N)
N (T, x) ≤ 0, N > 1;

• the number of roots of the equation v
(N)
N (T, x) = C with respect to T does not exceed the

number of roots of the equation v(T, x) = C, N > 1, C > 0;

• the following asymptotic formulae are valid:

v
(N)
N (T, x)− v(T, x) ∼

∞∑
j=1

cj(T, x)

N j
, N →∞ (76)

m∑
k=1

w(k,m)v
(Nk)
Nk (T, x)− v(T, x) = O(N−m), N →∞ (77)

where m ∈ N, w(k,m) are defined by (27).

Remark 3.5 As a result, we conjecture that the method of lines (or Carr’s) approximation
to the value of a finite-lived first touch digital option always converges to the actual value for
a wide class of Lévy processes. Moreover, we provide the order of the convergence: O(N−1),
where N is the number of time steps.

Notice that in the case of first touch digital options, the Fourier integral (9) for the function
v0 diverges as ξ ∈ R. In order to apply our Fourier transform based approach we need to use
a trick with weight functions.

Let a characteristic exponent ψ of Lévy process Xt is holomorphic in =ξ ∈ (λ−;λ+), λ− <
−1 < 0 < λ+. The condition holds for RLPE, in particular. Fix a real number ω, λ− < ω < 0,
and introduce functions wωj (x) = wj(x)eωx. Set qω = q + ψ(iω) and consider the operator Eqω
with symbol qω(qω + ψ1(ξ))−1, where ψ1(ξ) = ψ(ξ + iω) − ψ(iω). It is easy to check that the
following relation is valid.

φ−q (iω)E−qω = eωxE−q e−ωx, φ+
q (iω)E+

qω = eωxE+
q e
−ωx, (78)

qEqω = eωxEqe−ωxqω. (79)

Taking into account (79), the formula (75) can be rewritten in terms of the functions wωj (x)
as follows:

wωj (x) = 1(0;+∞)(x)((qω∆τ)−1Eqωwωj−1(x)− r∆τeωx). (80)

The modified algorithm includes the following steps:

• find wω1 (x) using (72):
wω1 (x) = eωx1(0;+∞)(x)(−1− r∆τ);

• j = 2, . . . , N, find wωj (x):
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• define vN(x) by the formula (see (78) and (74)):

vN(x) = (qω∆τ)−1e−ωxφ−q (iω)E−qωw
ω
N(x),

where φ−q (iω) can be find by the formula (39).

4 Numerical examples

In this section, we compare the performance of the new two methods and the original FWHF–
method. In numerical examples, we implement the algorithms of the enhanced FWHF–methods
described in Subsection 3.5 and in Subsection 3.6. We will refer to these algorithms as the
FWHF&GS-method and FWHF&PW-method, repectively. The valuse were calculated on a
PC with characteristics Intel Core(TM)I5 CPU, 1.8GHz, RAM 4Gb, under Windows 8.1.

We will show the advantage of the new methods in terms of speed over the original FWHF-
method. The two examples, which we analyze in detail below, are fairly representative. The
localization domain in both examples is (xmin;xmax) with xmin = − ln 2 and xmax = ln 2; we
check separately that if we increase the domain two-fold, and the number of points 4-fold, the
prices change by less than 0.0001.

Firstly, we will compare the first passage probabilities from the FWHF&GS-method and
the FWHF&PW-method against probabilities obtained using explicit formulae for the Wiener-
Hopf factors under Laplace transform and reported in [26]. Notice that the method in [26]
requires a high precision arithmetic, and we will use the probabilities from Table 1 and Table
2 in [26] as the benchmarks. Table 1 reports the first passage probabilities P [T ′ ≤ T ] under
Kou model with parameters: λ+ = 33.33, λ− = −50, c+ = 1.5, c− = 1.5 for two drift levels:
positive (µ = 0.1) and negative (µ = −0.1). The initial value of a stock S0 = 1, the barrier
H = exp(0.3) ≈ 1.349858808, and time T = 1. The parameters are taken from [26] with
corespondent reparametrization (see Example 2). Notice that in [26], T ′ is a first entrance of
Stinto [H,+∞). The results from the FWHF&PW and FWHF&GS methods converge very
fast and agree with the probabilities in [26].

As a second example, we consider the first touch digital option with barrier H from below
and time to expiry T in KoBoL (CGMY) model of order ν ∈ (0, 1), The parameters of the
model are σ = 0, ν = 0.5, λ+ = 9, λ− = −8, c = 1. We choose instantaneous interest
rate r = 0.072310, time to expiry T = 0.5 year, and the barrier H = 90. In this case, the
drift parameter µ is approximately zero. Table 2, reports prices for first touch digital options
calculated by using the FWHF method with very fine grids, and FWHF&PW and FWHF&GS
methods. The options are priced at the spot level S = 100. The prices from the FWHF&PW
and FWHF&GS methods converge very fast and agree with the prices obtained by the original
FWHF.

We see that FWHF&PW and FWHF&GS methods in both examples produce sufficiently
good results in just several dozens of milliseconds.

5 Conclusion

In the paper, we show the advantages of the Laplace transform-based approach in the con-
text of the pricing first touch digital options in exponential Lévy models. In particular, we
show that the computational efficiency of the numerical methods which start with the time
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Table 1: Kou model: first passage probabilities P [T ′ ≤ T ]

A

The method KW FWHF&PW FWHF&GS FWHF
Parameters N = 10 h = 0.0001 h = 0.001 h = 0.0001 h = 0.001 h = 0.0001

N = 5, m = 3 N = 5, m = 3 N = 14 N = 14 N = 2000
µ = 0.1 0.25584 0.25579 0.25522 0.25591 0.25673 0.25573
µ = −0.1 0.06122 0.06121 0.06098 0.06125 0.06158 0.06119
CPU-time

(sec) 0.29 0.029 0.39 0.039 11.3

Kou model parameters: λ+ = 33.33, λ− = −50, c+ = 1.5, c− = 1.5.
Option parameters: S0 = 1, H = exp(0.3) ≈ 1.349858808, T = 1.
Algorithm parameters: h – space step, N – number of time steps (or the parameter of the FWHF&PW and
FWHF&GS methods), m – number of terms in the acceleration formula

Table 2: KoBoL(CGMY) model: option prices
FWHF FWHF&PW FWHF&GS

Spot h = 0.0001 h = 0.001 h = 0.001 h = 0.0001 h = 0.001 h = 0.0001
price N = 1600 N = 5 N = 10 N = 10 N = 14 N = 14
S = 100 0.36626 0.36430 0.36435 0.36629 0.36558 0.36426
CPU-time
(sec) 4.2 0.015 0.024 0.21 0.025 0.22

KoBoL parameters: ν = 0.5, λ+ = 9, λ− = −8, c = 1, µ ≈ 0.
Option parameters: H = 90, r = 0.072310, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps (or the parameter of the FWHF&PW and
FWHF&GS methods), S – spot price.
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discretization can be significantly enhanced (often, in several dozen of times) by means of the
Laplace transform technique.

Moreover, we propose two new fast and accurate methods for pricing barrier options in
wide classes of Lévy processes. Both methods use the numerical Laplace transform inversion
formulae and the Fast Wiener-Hopf factorization method developed in [28]. The first method
uses the Gaver-Stehfest algorithm, the second one – the Post-Widder formula. In the present
paper we also suggest new Wiener-Hopf factorization formulae which can be also efficiently
implemented into the methods.

Numerical examples show that the new methods are computationally much faster (often,
dozen of times faster) than the original FWHF-method constructed in [28]. Our new methods
enjoy an additional appealing feature: they produce a set of option prices at different spot
levels, simultaneously.

The method based on the Post-Widder formula achieves similar performance to the method
which uses the Gaver-Stehfest algorithm; however, the former method does not require high
precision.

We notice that Carr’s randomization procedure in [9] indicates an alternative interpretation
of the approximation induced by our second method. As a result, we conjecture that Carr’s
approximation to the value of a finite-lived digital option always converges to the actual value
for a wide class of Lévy processes. Moreover, we provide the order of the convergence and some
properties of the approximate prices.

The framework proposed in the paper can be extended to regime switching Lévy models.
The method based on the Post-Widder formula under regime switching in Lévy-driven models
was implemented into the program platform Premia (www.premia.fr). Premia is a software
designed for option pricing, hedging and financial model calibration.
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[28] O. Kudryavtsev and S. Levendorskǐi. Fast and accurate pricing of barrier options under
Levy processes. J. Finance Stoch., 13(4): 531–562, 2009.

[29] O. Kudryavtsev. An efficient numerical method to solve a special cass of integro-
differential equations relating to the Levy models, Mathematical Models and Computer
Simulations, 3(6): 706–711, 2011.

[30] O. Kudryavtsev. Finite Difference Methods for Option Pricing under Levy Processes:
Wiener-Hopf Factorization Approach. The Scientific World Journal, 2013: Article ID
963625, 12 pages, 2013.

[31] Kudryavtsev, O., and A. Zanette. Efficient pricing of swing options in Lévy-driven models,
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